控制屏障功能(CBF)已被证明是非线性系统安全至关重要控制器设计的强大工具。现有的设计范式不能解决理论(具有连续时间模型的控制器设计)和实践(所得控制器的离散时间采样实现)之间的差距;这可能导致性能不佳,并且违反了硬件实例化的安全性。我们提出了一种方法,通过将采样DATA对应物合成与这些基于CBF的控制器的方法,使用近似离散的时间模型和采样DATA控制屏障函数(SD-CBFS)。使用系统连续时间模型的属性,我们建立了SD-CBF与采样数据系统的实际安全概念之间的关系。此外,我们构建了基于凸优化的控制器,该控制器正式将非线性系统赋予实践中的安全保证。我们证明了这些控制器在模拟中的功效。
translated by 谷歌翻译
将动态机器人带入野外,需要平衡性能和安全之间。然而,旨在提供强大安全保证的控制器通常会导致保守行为,并调整这些控制器,以找到性能和安全之间的理想权衡通常需要域专业知识或仔细构造的奖励功能。这项工作提出了一种设计范式,用于系统地实现平衡性能和强大安全性的行为,通过将基于安全感知的基于偏好(PBL)与控制屏障功能(CBF)集成来实现平衡性能和鲁棒安全性。融合这些概念 - 安全感知的学习和安全关键控制 - 提供了一种在实践中实现复杂机器人系统的安全行为的强大手段。我们展示了这种设计范式的能力,以实现在硬件上的模拟和实验上的四足机器人的安全和表演感知的自主操作。
translated by 谷歌翻译
本文介绍了机器人系统的安全关键控制的框架,当配置空间中的安全区域上定义了安全区域时。为了保持安全性,我们基于控制屏障函数理论综合安全速度而不依赖于机器人的A可能复杂的高保真动态模型。然后,我们跟踪跟踪控制器的安全速度。这使得在无模型安全关键控制中。我们证明了拟议方法的理论安全保障。最后,我们证明这种方法是适用于棘手的。我们在高保真仿真中使用SEGWAY执行障碍避免任务,以及在硬件实验中的无人机和Quadruped。
translated by 谷歌翻译
Learning fair graph representations for downstream applications is becoming increasingly important, but existing work has mostly focused on improving fairness at the global level by either modifying the graph structure or objective function without taking into account the local neighborhood of a node. In this work, we formally introduce the notion of neighborhood fairness and develop a computational framework for learning such locally fair embeddings. We argue that the notion of neighborhood fairness is more appropriate since GNN-based models operate at the local neighborhood level of a node. Our neighborhood fairness framework has two main components that are flexible for learning fair graph representations from arbitrary data: the first aims to construct fair neighborhoods for any arbitrary node in a graph and the second enables adaption of these fair neighborhoods to better capture certain application or data-dependent constraints, such as allowing neighborhoods to be more biased towards certain attributes or neighbors in the graph.Furthermore, while link prediction has been extensively studied, we are the first to investigate the graph representation learning task of fair link classification. We demonstrate the effectiveness of the proposed neighborhood fairness framework for a variety of graph machine learning tasks including fair link prediction, link classification, and learning fair graph embeddings. Notably, our approach achieves not only better fairness but also increases the accuracy in the majority of cases across a wide variety of graphs, problem settings, and metrics.
translated by 谷歌翻译
Autonomous vehicles must often contend with conflicting planning requirements, e.g., safety and comfort could be at odds with each other if avoiding a collision calls for slamming the brakes. To resolve such conflicts, assigning importance ranking to rules (i.e., imposing a rule hierarchy) has been proposed, which, in turn, induces rankings on trajectories based on the importance of the rules they satisfy. On one hand, imposing rule hierarchies can enhance interpretability, but introduce combinatorial complexity to planning; while on the other hand, differentiable reward structures can be leveraged by modern gradient-based optimization tools, but are less interpretable and unintuitive to tune. In this paper, we present an approach to equivalently express rule hierarchies as differentiable reward structures amenable to modern gradient-based optimizers, thereby, achieving the best of both worlds. We achieve this by formulating rank-preserving reward functions that are monotonic in the rank of the trajectories induced by the rule hierarchy; i.e., higher ranked trajectories receive higher reward. Equipped with a rule hierarchy and its corresponding rank-preserving reward function, we develop a two-stage planner that can efficiently resolve conflicting planning requirements. We demonstrate that our approach can generate motion plans in ~7-10 Hz for various challenging road navigation and intersection negotiation scenarios.
translated by 谷歌翻译
科学数据的一套简洁且可衡量的公平(可访问,可互操作和可重复使用的)原则正在转变用于数据管理和管理的最新实践,以支持和支持发现和创新。从这项计划中学习,并承认人工智能(AI)在科学和工程实践中的影响,我们为AI模型引入了一套实用,简洁和可衡量的公平原则。我们展示了如何在统一的计算框架内创建和共享公平的数据和AI模型,结合了以下要素:Argonne国家实验室的高级光子源,材料数据设施,科学数据和学习中心,Funcx和Argonne Leadersition的数据和学习中心计算设施(ALCF),尤其是ALCF AI测试台的Thetagpu SuperCuputer和Sambanova Datascale系统。我们描述了如何利用这种域 - 不足的计算框架来实现自主AI驱动的发现。
translated by 谷歌翻译
在本文中,我们在不确定的沟通和对抗性攻击者的影响下解决了多机器人信息路径计划(MIPP)任务。目的是创建一个多机器人系统,尽管存在损坏的机器人共享恶意信息,但仍可以学习并统一对未知环境的知识。我们使用高斯工艺(GP)来对未知环境进行建模,并使用相互信息的指标来定义信息。我们MIPP任务的目标是最大化团队收集的信息量,同时最大程度地提高弹性弹性的可能性。不幸的是,这些目标是矛盾的,尤其是在探索需要机器人之间断开连接的大环境时。结果,我们强加了一个概率的通信约束,该概率可以使机器人间歇性地满足和弹性地共享信息,然后在所有其他时间内采取行动以最大程度地提高收集的信息。为了解决我们的问题,我们选择具有最高弹性概率的会议位置,并使用顺序贪婪算法来优化机器人探索的路径。最后,我们通过比较应用弹性和非弹性MIPP算法的良好行为机器人的学习能力来展示结果的有效性。
translated by 谷歌翻译
可视化优化景观导致了数字优化的许多基本见解,并对优化技术进行了新的改进。但是,仅在少数狭窄的环境中生成了增强学习优化(“奖励表面”)的目标的可视化。这项工作首次介绍了27个最广泛使用的增强学习环境的奖励表面和相关的可视化。我们还探索了政策梯度方向上的奖励表面,并首次表明许多流行的强化学习环境经常出现“悬崖”(预期回报中突然下降)。我们证明,A2C经常将这些悬崖“脱落”到参数空间的低奖励区域,而PPO避免了它们,这证实了PPO对PPO的流行直觉,以改善以前的方法。我们还引入了一个高度可扩展的库,该库使研究人员将来可以轻松地生成这些可视化。我们的发现提供了新的直觉,以解释现代RL方法的成功和失败,我们的可视化构成了以新颖方式进行强化学习剂的几种失败模式。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译